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Abstract. We determine the joint density of secular coefficients and of the traces of powers for
random unitary matrices from Dyson’s circular ensembles. A byproduct are workable ‘unitarity
conditions’, necessary and sufficient for all roots of a polynomial to be unimodular and different.
These findings will be useful for combinations of random-matrix theory with semiclassical
approximations in calculating spectral properties of quantum systems whose classical limit is
globally chaotic. In a first such application we show that reasonable quasi-energy spectra result
by throwing diceà la random-matrix theory to complement restricted knowledge (rigorous or
from short periodic orbits) of the secular polynomial of a unitary Floquet matrix.

There is growing interest in the interrelation of semiclassical information and random-
matrix theory (RMT) for quantum systems whose classical phase space is dominated by
chaos. Both approaches are complementary in as much as spectral fluctuations on the scale
of a mean level spacing tend to be universal and faithful to RMT, while short periodic
orbits usually suffice to determine system specific properties of the (quasi)energy spectrum
on larger scales. Numerous attempts at explaining the success of RMT have been made,
some based on level dynamics [1–4], others more recently on superanalytic [5] (Efetov’s
nonlinearσ -model) and semiclassical [6–8] methods. The more recent ones among these
even predict certain corrections to RMT, due to system specific properties such as the rate
of equilibration of a (coarse grained) classical phase-space density.

This paper joins such efforts but takes up a different chain of thought. We propose
to clarify what help RMT can offer, as a complement to semiclassical information, in
calculating, for example, quasienergy spectra.

Correlations between secular coefficients of unitary time evolution operatorsU were
recently proposed [9, 10] as an indicator of quantum signatures of classical chaos.
The coefficients in question are defined through the secular determinant det(λ − U) =∑N

n=0 λ
naN−n whereN is the dimension of the Hilbert space; thean are related to the

traces of powers of the operatorU , tn = trUn, by Newton’s famous formulae [11].
Semiclassically, thenth trace tn can be constructed from properties of classical periodic
orbits of periodn. This fact allows us to interpret the indexn as a dimensionless time
counting the number of iterations of the quantum map defined by the unitary operatorU

or the corresponding classical map. The investigations in [10] were based on RMT and
motivated by the universality of certain spectral properties of quantum systems [4] with
chaos in their classical limit.

Concentrating on semiclassical aspects Smilansky and coworkers [7] then showed that
correlations of secular determinants are related to the classical Frobenius Perron operator
and the Ruelle zeta function. They treated the tracestn with 1 6 n 6 N/2 as independent
Gaussian random quantities. In fact, thetn do behave that way [10] whenU is allowed to
range within any one of Dyson’s circular ensembles [12, 13], provided the matrix dimension
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N is large and the trace indexn is small,n� N . An interesting dilemma remained for the
semiclassical treatment of dynamical systems with classical chaos: the Gaussian character
as well as the independence of thetn get lost whenn becomes of orderN , i.e. precisely
where one would like to replace semiclassical information from classical periodic orbits by
information from random-matrix theory. Indeed, largen means large times and these in
turn reveal spectral information on small (quasi)energy scales; but spectral properties on
the smallest (quasi)energy scales tend to be universal and correctly represented by random-
matrix theory.

As a first step to resolve the dilemma mentioned we determine the exact joint
distributions for the tracestn and the secular coefficientsan for Dyson’s circular ensembles.
As a useful byproduct we find necessary and sufficient conditions for all roots of a self-
inversive polynomial [14] to be unimodular and different, conditions rather more practical
than previously known ones [15].

We start from the joint density of eigenphasesϕ1, ϕ2, . . . , ϕN of Dyson’s ensembles
[12, 13],Pϕ ∝

∏
j<k |eiϕj − eiϕk |β whereβ is the level repulsion exponent (β = 1, 2, 4 for

the circular orthogonal, unitary and symplectic ensembles: COE, CUE, CSE, respectively).
That distribution determines both the joint distributionPt of the traces through

tn =
N∑
j=1

einϕj (1)

and the distributionPa of the secular coefficientsan through Newton’s formulae

nan = −tn −
n−1∑
k=1

an−ktk. (2)

The latter recursion relation can be solved explicitly for thean in terms of thetm with
m 6 n or vice versa for thetn as functions of theam with m 6 n. Due to the unitarity of
U the coefficients are self-inversive [14],

aN−n = aNa∗n (3)

with a0 = 1. It follows that all secular coefficients as well as the firstN traces are determined
by N real parameters, like for instance the eigenphasesϕi .

Let us first assume evenN and establish the conditions under which (1) uniquely
determines theϕ1, ϕ2, . . . ϕN as functions of thetm, t∗m with 1 6 m 6 N/2. Since for one
such set any permutation is also a solution we may restrict ourselves to the region

06 ϕ1 < ϕ2 < · · · < ϕN < 2π. (4)

The outer boundariesϕ1 = 0, ϕN = 2π correspond to similar manifolds with one dimension
less than (4). Both can be merged and then they belong to the interior of the manifold (4).
With this identification understood when referring to the manifold (4), the boundary of that
manifold or of any permutation of it appears whenever two eigenphases coincide. Thus the
boundary is given by

0= |
∏
j<k

(eiϕj − eiϕk )|2 ≡ det(tn−m) (5)

where we have introduced theN × N matrix tn,m = tn−m = t∗m−n with traces (1) as its
elements. However, the ‘trace matrix’(tn−m) contains more thanN/2 different traces;
the elementstm with m > N

2 have to be determined in terms of the ‘first’N/2 ones
through Newton’s formulae (2) and the self-inversiveness (3). The identity in (5) is a
simple consequence of the properties of the van der Monde determinant whose squared
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modulus appears in (5). From (1) we see that the matrixtn,m is Hermitian and positive
semidefinite. It follows that the boundary in discussion is reached whenever one or more
eigenvalues of the trace matrix vanish. In other words, we may define the interior of the
allowed region by requiring that matrix to be positive definite, i.e. the inequalities

t0 = t∗0 = N > 0

∣∣∣∣ t0 t1
t∗1 t0

∣∣∣∣ > 0∣∣∣∣∣∣
t0 t1 t2
t∗1 t0 t1
t∗2 t∗1 t0

∣∣∣∣∣∣ > 0 . . .

∣∣∣∣∣∣∣
t0 . . . tN−1
...

...

t∗N−1 . . . t0

∣∣∣∣∣∣∣ > 0.
(6)

It follows that |tn| 6 N for all n, i.e. that alltn lie in a compact region.
We can now refine the question in pursuit: With the conditions (6) met, do we upon

solving (1) find unique phases in the interior of the region (4)? To find the affirmative answer
we propose showing that the transformation (1) from phases to traces (i) is essentially one to
one and (ii) maps the region (4)onto rather than only just into the region (6). The strategy
of proof will be, roughly speaking, to make sure that the boundary of (4) mapsonto the
boundary of (6); by continuity, the interiors must then map onto one another as well. It
might be helpful to note that the obvious mapping of the boundary of (4)into the boundary
of (6) is much less than the ‘onto’ we need to establish.

Let us look at the self-inversive polynomial of degreeN constructed from the traces
tm with m 6 N

2 with the help of Newton’s formulae (2) and the self-inversiveness (3). We
know [14] that its zerosλ lie on the unit circle or appear in pairs(λ, 1

λ∗ ). It follows that
the full N ×N trace matrix can be written as

tn−m =
N∑
j=1

ei(n−m)(ϕj+iεj ) (7)

with either εj = 0 or pairwiseεj = −εk and ϕj = ϕk; complex ‘phases’ thus come in
complex conjugate pairs. Its determinant generalizes the one defined in (5) as

det(tn−m) =
∏
j<k

[(ei(ϕj+iεj ) − ei(ϕk+iεk))(e−i(ϕj+iεj ) − e−i(ϕk+iεk))]

=
∏
j<k

[2 sin((ϕj − ϕk + iεj − iεk)/2)]
2. (8)

Note that the matrix (7) is still Hermitian,tn−m = t∗m−n. It is easy to check that the
matrix tn−m (starting with real nondegenerate phases, i.e. with allεj = 0) immediately loses
positivity when two phases collapse into degeneracy, sayϕ1 = ϕ + η, ϕ2 = ϕ − η with
η→ 0, and proceed to becoming a complex conjugate pair (η→ iε). The generalized trace
matrix (7) is then given by

tn−m = ei(n−m)ϕ2 cos(η(n−m))+
N∑
j=3

ei(n−m)ϕj (9)

and the determinant (8) can be written as

det(tn−m) = (2 sinη)2
N∏
k=3

[
4

(
sin2

(
ϕ − ϕk

2

)
− sin2

(η
2

))]2 3···N∏
l<m

[
2 sin

(
ϕl − ϕm

2

)]2

.

(10)

As η = iε becomes imaginary this determinant becomes negative, since it is∝ − sinh2 ε

and it never changes sign again asε goes to infinity. The lowest eigenvalue of the matrix
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tn,m thus changes sign atη = 0 and is negative forε 6= 0. Equations (9) and (10) together
show that this eigenvalue behaves∝ −ε2 for small ε. It is also easy to see from (9) that
the 2× 2 determinantt20 − |t1|2 becomes negative at least for sufficiently largeε. From this
fact and the nonvanishing of (10) we may already conclude that the lowest eigenvalue is
negative. The foregoing argument can be generalized: let us look at a second coalescence
of two phases going into complexity. Then the determinant (10) changes sign again and it
may contain two or no negative eigenvalues. Again one sees that the determinant preserves
its sign as the second pair moves further away from the real axis of the complex ‘phase’
plane. The preserved sign together with the eventual negativity oft20 − |t1|2 implies that
there is at least one negative eigenvalue. The same reasoning works for any number of
separated coalescences, for which we conclude that the lowest eigenvalue is negative, as
long as separated pairs of phases have moved into the complex plane. All other cases, such
as multiple coalescences and coalescences of pairs in the complex plane can be included
as limits by continuous changes of the parametersϕj , εj , and therefore again the lowest
eigenvalue is nonpositive.

We may conclude, at this point, that inequalities (6) secure unitarity up to a similarity
transformation, i.e. they ensure that the matricesUn with traces tn have unimodular
eigenvalues. These conditions might enjoy lots of applications, such as for instance unitarity
checks on semiclassically approximated traces.

It remains to find the Jacobian of the transformation (1) withN/2 complex traces on
the l.h.s. A straightforward calculation shows

∂{Ret1, Im t1, . . . , Im t N
2
}

∂{ϕ1, . . . , ϕN } ∝ |aN
2
|(det(tn−m))

1
2 . (11)

Due to condition (6) this does not vanish (except on the lower-dimensional manifold
aN/2 = 0 on which the transformation (1) is not one to one; this is in analogy with the
transformation from polar to Cartesian coordinates in a plane where the vanishing of the
Jacobian in the origin does not matter; compare the example forN = 2 discussed below
in figure 1). The Jacobian∂t/∂a following from (2) is a constant. We thus obtain for the
joint densitiesPt of the traces orPa of the secular coefficients for evenN using the joint
density of the eigenphases and (5)

Pt ∝ Pa ∝ 1

|aN/2| (det(tn−m))
β−1

2 N even. (12)

These densities come with the ranges (6) to which the traces or secular coefficients are
confined; everything has to be expressed in the desired variables with the help of the self-
inversiveness (3) and Newton’s formulae (2).

In the case of oddN we have to keep one phase, sayaN = eiϕ̂ , and transform to
(N − 1)/2 traces or secular coefficients. Now the Jacobian (11) does not contain the factor
|aN/2|, and the joint densitiesPt of traces and the phasêϕ or the joint densityPa of
coefficients and the phasêϕ are given by

Pt ∝ Pa ∝ (det(tn−m))
β−1

2 N odd. (13)

Again conditions (6) define the admissible ranges. Interestingly, in the orthogonal case,
β = 1, the distribution (13) is constant in the region defined by conditions (6). Formulae
(12) and (13) extend also to the caseβ = 0, which implies in that case a singular (but
integrable) behaviour near the boundary of integration.

As a simple example we consider forN = 2 the transformation

t = eiϕ1 + eiϕ2 (14)
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Figure 1. Map (12) transforms the diagonal of the square onto the circle with radius 2. The
small circle is the image of the identified boundariesϕ1 = 0 andϕ2 = 2π . The pointt = 0 is
singular and is the image of the lineϕ1 = ϕ2 − π .

which maps the triangle 06 ϕ1 < ϕ2 < 2π in a complicated way (see figure 1) to the interior
of the circle with radius 2,|t | < 2. The distributionPt is given byPt ∝ 1

|t | (4− |t |2)
β−1

2 ,
obtained forβ = 1, 2 in [10].

As already mentioned [10], the joint density of the firstn tracestm with largeN and
smallm 6 n� N , is Gaussian. Certainly equations (12) and (13) show that this Gaussian
character gets lost whenn approaches the order ofN . Nevertheless, it is interesting to
see, for example, that forβ = 1 the Gaussian property follows solely from restrictions
given by the boundary (6). This is due to integrating out a large number of remaining
variables. An interesting consequence of the transformation (14) is, for example, for the
map t = eiϕ1 + eiϕ2 + eiϕ3 the circle from figure 1 is rotated around a boundary point such
that |t | covers the whole range|t | 6 3. Similarly it follows for the map (1) that eachtn
covers the whole range|tn| 6 N (for N > 1, n > 0).

We proceed to an application of the statistics of the tracestn to the determination of
quasienergy spectra, considering kicked tops with Floquet operators of the form [4]

U = e−i( kx
2j+1J

2
x+pxJx)e−ipyJye−i( kz

2j+1J
2
z +pzJz). (15)

Here angular momentum operatorsJi, i = x, y, z appear as generators of rotations by angles
pi and nonlinear rotations by angles∝ kiJi/(2j+1); for the calculations to be presented here
we have chosenpx = 1.0, py = 1.0, pz = 1.1, kx ≈ 8, kz ≈ 6. These Floquet operators are
meant to act in a Hilbert space of dimension 2j+1 with the latter determined by the integer
or half integer quantum numberj which fixes the conserved squared angular momentum as
(J)2 = j (j+1). The classical limit,j →∞, yields the sphere limj→∞(J)2/[j (j+1)] = 1
as phase space and that space is dominated by chaos for the chosen values of thepi, ki .
Time reversal invariance is broken since both torsion constants are taken as nonzero [4].

The secular polynomial and thus the 2j+1 eigenphases are of course determined by the
first j tracestn, the determinant detU , and the self-inversiveness (3), assuming integerj .
One might imagine the required traces and detU determined semiclassically [16], so as to
havetn expressed in terms of properties of classical periodic orbits of periodn. While for
small values ofn such semiclassical evaluation of thetn is quite feasible [16], the infamous
exponential proliferation of periodic orbits makes for trouble quickly asn grows. On the
other hand, it is the short periodic orbits which carry the most important system specific
information into the tracestn, while orbits with periods nearj , i.e. periods of the order of the
Heisenberg time 2j+1, tend to influence the quasienergy spectrum on the scale of an inverse
level spacing where universal behaviour prevails. One is therefore tempted to combine the
semiclassical technique with RMT: the former could be employed in determining periodic
orbits with small periods and the thus accessible first few traces, and the latter to fix the
remaining traces withn up to j by throwing the dice according to the joint probability
density of the traces for the CUE determined above. We have undertaken such a hybrid
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Figure 2. The standard deviation between exact and hybrid eigenphases for CUE tops obtained
from independent (·) and correlated (+) traces as described in the text.

procedure but, in order to test the random-matrix part of the game by itself, employing exact
rather than semiclassical values for the first 60% of the requiredj traces and the determinant.
Every set of traces so fixed yields 2j + 1 approximate eigenphases; by repeatedly throwing
dice for thetn with 0.6j < n 6 j we obtain 2j + 1 ‘clouds’ of approximate eigenphases.
Once the ‘centres of mass’ of these clouds have stabilized we stop the game and take those
centres as final approximants for the eigenphases. Figure 2 depicts the standard deviation
between exact and approximate eigenphases,1ϕ = ( 1

2j+1

∑2j+1
i=1 (ϕi−ϕappr

i )2)1/2, versus the
dimension 2j + 1. In order to obtain an impression of what typically happens, an average
over several Floquet matrices with slightly different values of thepi, ki was worked into
figure 2. We find the error to be insensitive to the dimension and near 14% of the mean
spacing 2π/(2j + 1), somewhat less than the 18% one incurred when the randomly chosen
traces are treated as independent Gaussian numbers with the CUE means and variances [10],
〈tn〉 = 0, 〈|tn|2〉 = n. Repeating the game for COE-type tops with time reversal invariance
(kz = pz = 0) we obtained errors about 5% higher while CSE-type tops [4], according
to their greater spectral stiffness, yielded errors 4% less than the CUE-type ones referred
to in figure 2. We may conclude that Monte Carlo completion of exact or semiclassical
information about traces allows meaningful shots at quasienergy spectra.
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